Эффекторные нейроны

Что такое нервная система человека

Определение

Нервная система — целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с эндокринной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды.

Основная функция нервной системы человека заключается в передаче высокоскоростных импульсов, позволяющих органам и организму в целом адаптироваться к внутренним раздражителям, условиям окружающей среды и своевременно на них реагировать. Нарушение работы нервной системы приводит к сбою всех взаимосвязанных систем организма, ухудшению самочувствия и здоровья.

Как выглядит

Нервная система выглядит как сеть волокон, состоящих из нейронных цепей, пронизывающих все тело и органы живого существа. Структура объединяет между собой все клетки организма, стимулирует их деятельность и обеспечивает функционирование остальных жизненно важных систем:

  • дыхательной;
  • пищеварительной;
  • сердечно-сосудистой;
  • эндокринной;
  • иммунной.

Нервная система настраивает каждый организм индивидуально, подстраиваясь под условия и потребности. Воздействие на нервную систему способствует запуску импульсов, вызывающих ответную реакцию и рефлексивные действия. Присутствие нервных окончаний в каждой клетке тела организует слаженную работу систем внутри организма и формирует связь с внешним миром.

Примечание

Известно, что нервная система всех млекопитающих идентична по строению и функционалу. Однако у человека работу нервной системы регулирует более развитый, по сравнению с другими существами, головной мозг.

Общая длина

Нервная система человека представляет собой соединение бесчисленного количества нервных клеток (нейронов), состоящих из основного тела и отростков. Скорость импульсов, которые проходят по нервным волокнам, достигает 4 000 метров в час.

Образование нервов происходит из отростков: длинных — аксонов, достигающих 90-100 см, и коротких — дендритов. Протяженность всей длины нервной системы человека достигает 75 км.

Определения

Аксон — длинный нейронный отросток, который передает импульсы непосредственно от тел клеток. Аксоны входят в состав белого мозгового вещества и участвуют в образовании двигательных групп нервов. У нервной клетки не бывает более одного аксона.

Дендрит — укороченный отросток нейрона с разветвленной сетью, передает импульс к телам клеток. В составе нейрона может насчитываться несколько дендритов. Дендриты лежат в основе образования чувствительных нервов.

Паршута Юлия – Месяц май

Свойства и функции нейронов

Свойства:

  • Наличие трансмембранной разницы потенциалов (до 90 мВ), наружная поверхность электроположительна по отношению к внутренней поверхности.
  • Очень высокая чувствительность к некоторым химическим веществам и электрическому току.
  • Способность к нейросекреции, то есть к синтезу и выделению особых веществ (нейромедиаторов), в окружающую среду или синаптическую щель.

Высокое энергопотребление, высокий уровень энергетических процессов, что обуславливает необходимость постоянного притока основных источников энергии — глюкозы и кислорода, необходимых для окисления.

Функции:

  • Приёмная функция (синапсы — точки контакта, от рецепторов и нейронов получаем информацию в виде импульса).
  • Интегративная функция (обработка информации, в результате на выходе нейрона формируется сигнал, несущий информацию всех суммированных сигналов).
  • Проводниковая функция (от нейрона по аксону идет информация в виде электрического тока к синапсу).
  • Передающая функция (нервный импульс, достигнув окончание аксона, который уже входит в структуру синапса, обуславливает выделение медиатора — непосредственного передатчика возбуждения к другому нейрону или исполнительному органу).

См. также

  • Искусственный нейрон
  • Модель биологического нейрона
  • Нейронная сеть
  • Нейрофизиология
  • Зеркальные нейроны
  • Мотонейроны

Нейропластичность — что это?

Нейропластичность – это свойство человеческого мозга изменяться под воздействием нового опыта, знаний и условий. В основном, на этом свойстве нашего мозга и основана вся суть результативности психологической работы.

Начнем как раз с этого конца, оригинальности ради. Какие задачи стоят перед психологом и клиентом в процессе работы?

Разберем на примере работы со страхом публичных выступлений:

  • Изменить целый список УБЕЖДЕНИЙ из категорий «непринятие и нелюбовь окружающих» и «небезопасность мира». Отсюда страх оценки окружающих, страх быть осмеянным, непонятым, каким-то «не таким».
  • Изменить АВТОМАТИЧЕСКОЕ реагирование на определенные ситуации. То есть, «разрушить» СТАРЫЕ реакции (стесняться высказать свое мнение) и выработать НОВЫЕ, полезные (высказывать свое мнение бодро, гордо и с чувством права).
  • Отыскать и активировать «спящие» ресурсы.
    Например, если у застенчивого человека ХОТЬ РАЗ В ЖИЗНИ был опыт СМЕЛОГО высказывания или действия, то можно «заякорить» этот навык и сделать его новой нормой.
  • «Показать» мозгу НОВЫЙ ОПЫТ в безопасных условиях. То есть, настроить НОВЫЕ модели отношения к ситуации.
    Например, увидеть, что можно идти в публичность не из позиции «надо», а из позиции «хочу!» и получать в этом удовольствие и море энергии.
  • Все наработанное перевести в разряд НОВЫХ ПРИВЫЧЕК.

За счет чего же происходят все эти изменения? – спросите вы.

Научные исследования доказывают, что у нашего мозга есть способность выращивать НОВЫЕ нейроны. Вопреки известному «нервные клетки не восстанавливаются». Этот процесс называется НЕЙРОГЕНЕЗОМ.

Но сам по себе нейрон (нервная клетка) на бытовом уровне мало чем вас порадует. Для нас важен еще один процесс в мозге – НЕЙРОПЛАСТИЧНОСТЬ.

Это способность образовывать связи между этими нейронами. Выстраивая ту самую ниточку паутины — «НЕЙРОННУЮ ЦЕПОЧКУ», о которой из всех окон кричат психологи в попытках объяснить клиенту, почему же в процессе «терапии» у него формируются новые, нужные ему, привычки реагирования.

Если на пальцах: любой навык или эмоция, будь то умение ездить на гироскутере или умение «блаженно» улыбаться дождю — цепь нейронов.

По этой цепи, как по электрическому кабелю, передается информация от различных рецепторов к центральной нервной системе. А от нее, соответственно, к разным органам, тканям, эндокринным железам.

Пример:
Вы видите щенка (рецепторы органов зрения «видят»). И дальше два варианта развития событий:

  • В прошлом у вас был негативный опыт «общения» с собакой и в мозг отправляется сигнал «МНЕ СТРАШНО». А из мозга идет сигнал вырабатывать соответствующие гормоны (адреналин, норадреналин, кортизол) и вы «тактично ретируетесь» от щенка.
  • В прошлом был позитивный опыт и в мозг отправляется сигнал «МНЕ РАДОСТНО». Мозг дает команду вырабатывать «гормоны радости» (серотонин, дофамин, эндорфины) и вы, радостно подхихикивая, начинаете тискать и нацеловывать собачонку.

В нас УЖЕ прописаны сценарии поведения. Мозг просто извлекает из «картотеки» нужную реакцию. НО. Мы же говорим о нейропластичности. Все можно изменить, при желании. И чем «прочнее» будет отлажена нейронная цепь, тем легче вы оперируете навыком.

То есть, например, наработанный новый навык «спокойно реагировать на вбросы хейтеров» должен стать естественной реакцией, а не «соберу волю в кулак и не буду нервничать».

Метафора для наглядности понимания этого процесса: представьте себе, как на беговых лыжах вы прокладываете лыжню на нетронутом снегу. И в противовес — как бодро несетесь по уже проложенной и «разъезженной» лыжне.

Также и тут

Передачу импульсов по нейронной цепи важно сделать максимально быстрой и бесперебойной

Строение нейрона

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Дендриты

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Нейрон и его строение

Часто можно слышать, что умственные способности человека гарантирует наличие серого вещества. Что это за вещество и почему оно серое? Такой цвет имеет кора головного мозга, состоящая из микроскопических клеток. Это нейроны или нервные клетки, которые обеспечивают работу нашего мозга и управление всем организмом человека.

Как устроена нервная клетка

Нейрон, как и любая живая клетка, состоит из ядра и клеточного тела, которое называют сома. Размер самой клетки микроскопический – от 3 до 100 мкм. Однако это не мешает нейрону быть настоящим хранилищем разнообразной информации. Каждая нервная клетка содержит в себе полный набор генов – инструкций по производству белков. Одни из белков участвуют в передаче информации, другие создают защитную оболочку вокруг самой клетки, третьи участвуют в процессах памяти, четвертые обеспечивают смену настроения и т. д.

Даже небольшой сбой в одной из программ по производству какого-то белка может привести к тяжелым последствиям, заболеванию, нарушению психической деятельности, слабоумию и т. д.

Каждый нейрон окружен защитной оболочкой из глиальных клеток, они буквально заполняют все межклеточное пространство и составляют 40 % от вещества головного мозга. Глия или совокупность глиальных клеток выполняет очень важные функции: защищает нейроны от неблагополучных внешних воздействий, поставляет нервным клеткам питательные вещества и выводит продукты их жизнедеятельности.

Глиальные клетки стоят на страже здоровья и целостности нейронов, поэтому не допускают проникновение в нервные клетки многих посторонних химических веществ. В том числе и лекарственных препаратов. Поэтому эффективность различных лекарств, призванных усилить деятельность мозга, совершенно непредсказуема, и действуют они по-разному на каждого человека.

Дендриты и аксоны

Несмотря на сложность устройства нейрона, сам по себе он не играет существенной роли в работе мозга. Наша нервная деятельность, в том числе мыслительная активность – это результат взаимодействия множества нейронов, обменивающихся сигналами. Прием и передача этих сигналов, точнее, слабых электрических импульсов происходит с помощью нервных волокон.

Нейрон имеет несколько коротких (около 1 мм) разветвленных нервных волокон – дендритов, названных так из-за схожести с деревом. Дендриты отвечают за прием сигналов от других нервных клеток. А в качестве передатчика сигналов выступает аксон. Это волокно у нейрона только одно, зато оно может достигать в длину до 1,5 метров. Соединяясь с помощью аксонов и дендритов, нервные клетки образуют целые нейронные сети. И чем сложнее система взаимосвязей, тем сложнее наша психическая деятельность.

Работа нейрона

В основе сложнейшей деятельности нашей нервной системы – обмен слабыми электрическими импульсами между нейронами. Но проблема в том, что изначально аксон одной нервной клетки и дендриты другой не соединены, между ними находится пространство, заполненное межклеточным веществом. Это так называемая синаптическая щель, и преодолеть ее сигнал не может. Представьте, что два человека тянут друг к другу руки и совсем чуть-чуть не дотягиваются.

Эта проблема решается нейроном просто. Под воздействием слабого электрического тока возникает электрохимическая реакция и формируется белковая молекула – нейротрансмиттер. Эта молекула и перекрывает синаптическую щель, став своеобразным мостиком для прохождения сигнала. Нейротрансмиттеры выполняют и еще одну функцию – они связывают нейроны, и чем чаще проходит сигнал по этой нервной цепи, тем сильнее эта связь. Представьте брод через реку. Проходя по нему, человек бросает в воду камень, и затем каждый следующий путник поступает так же. В результате возникает прочный, надежный переход.

Такое соединение между нейронами называют синапсом, и оно играет важную роль в деятельности мозга. Считается, что даже наша память – это результат работы синапсов. Эти связи обеспечивают большую скорость прохождения нервных импульсов – сигнал по цепи нейронов движется со скоростью 360 км/час или 100 м/сек. Можно посчитать, за какое время в головной мозг попадет сигнал от пальца, который вы случайно укололи иголкой. Есть старая загадка: «Что быстрее всего на свете?». Ответ: «Мысль». И это очень было точно подмечено.

Характеристика нейронов

Структурно-функциональные элементы центральной системы – глиальные клетки и нейроны. Первые количественно преобладают, хотя на них возлагается решение вспомогательных, второстепенных задач. Нейроны способны выполнять много операций. Они вступают во взаимодействие друг с другом, формируют связи, принимают, обрабатывают, кодируют и передают нервные импульсы, хранят информацию.

Нейроглия выполняет опорную, разграничительную и защитную (иммунологическую) функцию в отношении нейронов, отвечает за их питание. В случае повреждения участка нервной ткани, глиальные клетки восполняют утраченные элементы для воссоздания целостности мозговой структуры. Количество нейронов в составе ЦНС равняется около 65-100 млрд. Клетки головного мозга образуют нейронные сети, охватывающие все отделы тела человека.

Передача данных в рамках сети осуществляется при помощи импульсов – электрических разрядов, которые генерируются клетками нервной ткани. Считается, что число нейронов, которые находятся в мозге человека, не изменяется в течение жизни, если не брать в расчет ситуации, когда в силу определенных причин (нейродегенеративные процессы, механические повреждения мозговых структур) происходит их гибель и уменьшение количества.

Необратимое повреждение участка нервной ткани сопровождается неврологическими нарушениями – судорогами, эпилептическими приступами, расстройством тактильного восприятия, слуха и зрения. Человек утрачивает способность чувствовать, разговаривать, мыслить, двигаться. Развитие интеллектуальных способностей человека отождествляется с увеличением количества нейронных связей в мозге при неизменной численности нейронов.

Нейрон выглядит, как обычная клетка, состоящая из ядра и цитоплазмы. Он оснащен отростками – аксоном и дендритами. При помощи единственного аксона осуществляется передача информации другим клеткам. Дендриты служат для приема информации от других клеток. В аксоплазме (часть цитоплазмы нервной клетки, которая находится в аксоне) синтезируются вещества, передающие информацию – нейромедиаторы (ацетилхолин, катехоламин и другие).

Нейромедиаторы вступают во взаимодействие с рецепторами, провоцируя процессы возбуждения или торможения. Нейроны образуют группы, ансамбли, колонки с учетом расположения в определенном отделе головного мозга, в зависимости от того, сколько и какие функции выполняют в процессе жизнедеятельности человека. К примеру, ансамбль может состоять из сотни нервных клеток, которые включают:

  1. Клетки, получающие сигналы из подкорковых отделов (к примеру, от ядер таламуса – сенсорных или двигательных).
  2. Клетки, принимающие сигналы из других отделов коры.
  3. Клетки локальных сетей, формирующие вертикальные колонки.
  4. Клетки, отправляющие сигналы обратно к таламусу, другим участкам коры, элементам лимбической системы.

Синапс – место, где происходит биоэлектрический контакт между двумя клетками и передача информации благодаря преобразованию электрического импульса в химический сигнал и затем снова в электрический. Подобные трансформации протекают в синапсе при переходе нервного импульса через пресинаптическую мембрану, синаптическую щель и постсинаптическую мембрану.

Передача импульса возможна между отдельными нейронами или нейроном и эффекторной клеткой (клеткой органа, который исполняет задачу, закодированную в сигнале). Классификация синапсов предполагает разделение по критериям:

  • Месторасположение (центральная, периферическая системы).
  • Тип действия (возбуждение, торможение).
  • Вид нейромедиатора, участвующего в процессе передачи сигнала (холинергический, адренергический, серотонинергический).

Количество синапсов у одного нейрона, расположенного в головном мозге, может достигать 10 тысяч. Скорость передачи биоэлектрического сигнала составляет около 3-120 м/с. Кроме синаптической передачи существует другой способ проведения сигнала – через кровь. Передвижение закодированных данных происходит за счет того, что нервные отростки связываются с кровеносным сосудом и выделяют в кровь нейрогормон.

Нервные клетки, отвечающие за моторную активность, могут создавать тысячи синаптических контактов. Синапсы, формирующиеся на дендритах, количественно преобладают. Меньше синаптических связей образуется на аксонах. В процессе активации одних клеток, происходит торможение других. В результате человек может сосредоточиться на конкретной мысли или выполнить произвольное движение.

Комментарии

Виды нейронов

Нейроны находятся не только в головном мозге, где они, взаимодействуя, образуют центральную нервную систему. Нейроны расположены во всех органах нашего тела, в мышцах и связках на поверхности кожи. Особенно много их в рецепторах, то есть органах чувств. Разветвленная сеть нервных клеток, которая пронизывает все тело человека – это периферическая нервная система, которая выполняет не менее важные функции, чем центральная. Все разнообразие нейронов разделяют на три основных группы:

  • Аффекторные нейроны получают информацию от органов чувств и в виде импульсов по нервным волокнам поставляют ее к головному мозгу. Эти нервные клетки имеют самые длинные аксоны, так как их тело находится в соответствующем отделе головного мозга. Существует строгая специализация, и звуковые сигналы поступают исключительно в слуховой отдел мозга, запахи – в обонятельный, световые – в зрительный и т. д.
  • Промежуточные или вставочные нейроны занимаются обработкой информации, поступившей от аффекторов. После того как информация оценена, промежуточные нейроны подают команду расположенным на периферии нашего тела органам чувств и мышцам.
  • Эфферентные или эффекторные нейроны передают эту команду от промежуточных в виде нервного импульса к органам, мышцам и т. д.

Самой сложной и наименее понятной является работа промежуточных нейронов. Они отвечают не только за рефлекторные реакции, такие, например, как отдергивание руки от горячей сковородки или моргание при вспышке света. Эти нервные клетки обеспечивают такие сложнейшие психические процессы, как мышление, воображение, творчество. И как мгновенный обмен нервными импульсами между нейронами превращается в яркие образы, фантастические сюжеты, гениальные открытия, да и просто в размышления о тяжелом понедельнике? Это главная тайна головного мозга, к разгадке которой ученые даже пока не приблизились.

Единственное, что удалось выяснить, что разные виды мыслительной деятельности связаны с активностью разных групп нейронов. Мечты о будущем, заучивание стихотворения, восприятие близкого человека, обдумывание покупок – все это отражается в нашем мозге как вспышки активности нервных клеток в различных точках коры головного мозга.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину аксона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов.

По количеству отростков выделяют следующие морфологические типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Подводим итог

Все наши автоматические и рефлекторные действия происходят под надзором именно спинного мозга. Исключение составляют лишь те, которые контролирует сам головной мозг. Например, воспринимая увиденное с использованием глазного нерва, который идет прямо в головной мозг, мы меняем угол зрения при помощи мышц глазного яблока, которые уже контролируются спинным мозгом. Плачем мы, кстати, тоже по приказу спинного мозга – слезными железами «командует» именно он. Сознательные наши действия начинаются в головном мозге, но как только они становятся автоматическим, их контроль переходит к спинному мозгу. Можно сказать, что нашему пытливому головному мозгу нравится учиться. А когда он уже научился, ему становится скучно и он отдает «бразды правления» своему более древнему в эволюционном плане собрату.

Заключение

Пластичность нейронов головного мозга позволяет не только выполнять генетически заданные программы, но и выстраивать новые. По образу и подобию человеческой нервной системы ведутся работы в области создания искусственного интеллекта. Существует множество научных споров об этичности, возможностях и опасностях данных разработок. В настоящее время исследователи рассматривают новые концепции образования нервных связей, применяя сложнейшие математические методы. Человеческий мозг до сих пор таит в себе множество загадок, которые еще предстоит раскрыть ученым.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector